Zero Emission Bus Deployment Best Practices

EV Roadmap 10
Portland, Oregon
June 20, 2017
About CTE

- Mission: To advance clean, sustainable, innovative transportation and energy technologies
- 501(3)(c) non-profit
- Membership-based organization
- Portfolio - $400+ million
 - Research, development, demonstration, and deployment
 - Alternative fuel and advanced vehicle technologies
- National presence
 - Atlanta, Berkeley, Los Angeles, St. Paul
- Project sponsorship
 - Federal Transit Administration
 - Departments of Energy, Defense, Interior, NASA, and EPA
Current Projects

Over $217 million active project portfolio
CTE Zero Emission Bus Projects

More than 140 ZEB’s with over 30 Transit Agencies!
CTE ZEB Services

• Grant Applications
• Fleet Transition Strategy and Planning (ZEB Roadmap)
• Market Surveys
• Requirements Analysis and Technology Assessment
• Technical Specifications and Procurement Evaluation
• Production Oversight, Buy America Audits, and Quality/Resident Inspections
• Deployment Project Management and Technical Assistance
• Benefits Analysis and Key Performance Indicator Reporting
Transit as a Proving Ground

- Bounded Duty Cycle
- Operating Hours
- Spare Ratio

- Professional Staff
- Centrally Fueled
- Cost to End User
Battery Electric Bus Deployments are Complicated

- Fuel costs can change hour to hour
- Bus performance can change drastically route to route
- Bus performance can change season to season
- Battery capacity changes over time
- Auxiliary loads have a much larger effect
- Drivers can make a huge difference on bus efficiency/range

In most cases, deployment decisions cannot be made intuitively.
Modeling Conditions: Batteries
Route Modeling

<table>
<thead>
<tr>
<th>Route Description</th>
<th>OEM Brochure</th>
<th>CTE Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route A (summer, no passengers)</td>
<td>1.7 – 2.0</td>
<td>1.72</td>
</tr>
<tr>
<td>Route A (summer, avg. passengers)</td>
<td>1.7 – 2.0</td>
<td>2.11</td>
</tr>
<tr>
<td>Route A (summer, max passengers)</td>
<td>1.7 – 2.0</td>
<td>2.46</td>
</tr>
<tr>
<td>Route A (winter, no passengers)</td>
<td>1.7 – 2.0</td>
<td>1.91</td>
</tr>
<tr>
<td>Route A (winter, avg. passengers)</td>
<td>1.7 – 2.0</td>
<td>2.64</td>
</tr>
<tr>
<td>Route A (winter, max passengers)</td>
<td>1.7 – 2.0</td>
<td>3.10</td>
</tr>
<tr>
<td>Route B (fall, no passengers)</td>
<td>1.7 – 2.0</td>
<td>1.68</td>
</tr>
<tr>
<td>Route B (fall, avg. passengers)</td>
<td>1.7 – 2.0</td>
<td>2.06</td>
</tr>
<tr>
<td>Route B (fall, max passengers)</td>
<td>1.7 – 2.0</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Worst Route, Worst Case: 6.17 kWh/mile
Evaluating Technology for Your Service

Technical Options
- Battery or Fuel Cell?
- Depot or On-route charging?
- Conductive or Inductive charging?
- Number/location of infrastructure?

Service Attributes
- Route scheduling
- Route density
- Terrain
- Climate
- Utility Rates

Find Best Fit Through Analysis & Modeling
Key Elements for ZEB Evaluation

• Determine which technology is right for your routes
 – Bus Modeling & Route Simulation
• Estimate Operating Costs
 – Rate Modeling & Fuel Cost Analysis
• Establish the Business Case
 – Life Cycle Cost Analysis
 – Risk Assessment
Bus Modeling and Route Simulation

Service Requirement

- Route Logistics
 - Length
 - Duration
 - Schedule
 - Frequency
- Duty Cycle
 - Speed
 - Accel./Decel
 - Grades
 - Passenger Load
 - Auxiliary Load
 - Deadhead
- Operating Environment
 - Traffic Congestion
 - Climate
ZEB Modeling Methodology

- Autonomie™ Simulation Software (developed by Argonne National Lab.)
- GUI utilizing MATLAB & Simulink software package
- Quick assembly of complex ZEB specifications:
 - Vehicle weight
 - Battery chemistry and energy capacity
 - Motor power output and energy requirements
 - Rolling resistance
Typical Route Model Results

- route data
- bus specifications
- operation plan

Model

- expected energy use
- average bus efficiency
- charging requirements

Graphs:
- Bus Speed
- Layover
- Battery SOC
- Charge Rate
Key Elements for ZEB Evaluation

- Determine which technology is right for your routes
 - Bus Modeling & Route Simulation
- Estimate Operating Costs
 - Rate Modeling & Fuel Cost Analysis
- Establish the Business Case
 - Life Cycle Cost Analysis
 - Risk Assessment
Rate Modeling & Fuel Cost Analysis

• Battery Electric Charging
 – Energy Consumption estimate from Route Modeling
 – Charger Specifications
 – Charging Profile
 • Charge Rate
 • Duration
 • Time of Day, Day of Week, Season
 – Utility Rate Schedules
• Hydrogen Fueling
 – Fuel Source and cost
 – O&M
Business Case Analysis

Life Cycle Cost Analysis

- Initial Capital Costs
 - Buses
 - Fueling and Power Infrastructure
 - Upgrades to Service Bays
- Construction Costs
 - Site Prep, Civil, Mechanical, Electrical, Installation, etc.
- Annual Fuel Cost from Rate Modeling
- Major Component Replacement
 - Batteries
 - Fuel Cells

Risk Assessment

- Power Outage/Grid Disruption
- Vendor Viability/Support
Key Performance indicators

Track & Analyze Performance - Take Corrective Action - Realize Benefits - Repeat