COST EFFECTIVE PEV CHARGING IN THE REAL WORLD – PHEVS AND BEVS

DANilo J. Santini
Senior Economist
Argonne National Laboratory
dsantini@anl.gov

Marcy Rood
Clean Cities Program Manager
Argonne National Laboratory

Yan (JoAnn) Zhou
Transportation Systems Analyst
Argonne National Laboratory

June 20, 2017
Portland Oregon

The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or the University of Chicago.
KEY CHARGING CONCEPTS

- **Desirable charging** - steady low power L1 overnight charging *consistently* every evening without need for utility control

- **Most valuable charging** – controlled intermittent L2 charging at the times and power levels desired by utilities and systems operators

- **Passive management** – technology imposes desirable behavior w/o active control

- **Active management** – utilities can vary minute-to-minute, hr-to-hr and day-to-day

- **Unmanaged** (typical today) – intermittently imposes problematic grid loads

- To meet regular everyday driving needs, PHEVs must be recharged every night.

- L1 charging in 11 hrs connected overnight in garages meets daily PHEV needs

- BEVs using L2 charging can charge every few days and meet everyday driving needs. To change to consistent overnight charging requires control.
BEVS AND PHEVS REQUIRE DIFFERENT PUBLIC & RESIDENTIAL CHARGING TECHNOLOGY. RESIDENTIAL IS FUNDAMENTAL TO BOTH. DCFC IS NECESSARY FOR BEV SUCCESS.

Intercity DC fast charging serves a minority of PEVs

BEVs (& 1 PHEV) with DC Fast Charging
Best technologies for L2 with active control

PHEVs and BEVs without DC Fast Charging
Best technologies for L1 with passive control

L2 = 2-19 kW
L1 = 1-2 kW
PHEVS AND BEVS DIFFER SIGNIFICANTLY FOR BEST “COMPOSITE” CHARGING STRATEGY (NIGHT + DAY)

– Daytime opportunity charging needs are different
 • BEVs benefit from DC fast charging, today’s PHEVs cannot
 • 2014 PHEV sales benefitted more from workplace charging than BEVs (but both benefitted)

– Passive management via L1 charging is least costly, works nicely for PHEVs
 • To drive miles electrically, PHEVs need to charge regularly – the technology & L1 requires regular, steady, long duration night charging
 • BEVs can charge intermittently, leading to bunching of charging and disconnection from grid

– Active management via L2 costs utilities more, but can have high grid load smoothing value when provided to long-range BEVs
 • Long range BEVs can flexibly charge a few times a week, at a high rate at large high kW houses
 • Controlled BEVs can provide a large charging demand “cushion” during low system load
 • Connected, controlled BEV owners should be compensated for hours opted in, kW capability, and negative price purchases
PROPER NIGHT & DAY CHARGING MANAGEMENT WILL GREATLY INCREASE ODDS OF PLUG-IN VEHICLE SUCCESS

- Overnight residential charging is fundamental. Daytime ‘opportunity charging” enhances success, is best done differently for PHEVs vs. BEVs.
- Passively managed low power (L1) overnight “valley filling” charging via PHEVs can reduce average electricity production cost. With active management BEVs can reduce costs even more.
- Unmanaged high kW (L2) charging drives cost up (EVSE, electric generation), resale market down (fewer houses have adequate existing kW).
- Early morning charging increases wind use (onshore wind energy is maximum in early morning) and clean natural gas generation.
- Education & proper price incentives cost-effectively promote early morning charging.
- Plugged in BEVs offer best opportunities for smart L2 grid-to-vehicle controls.
The manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Disclaimer: Expert opinions and evaluations herein are those of the author and/or referenced scientific papers and not Argonne National Laboratory, the U.S. Department of Energy, or the University of Chicago.
THANKS TO THE U.S. DEPARTMENT OF ENERGY CLEAN CITIES PROGRAM.