Electric Fleets: Moving Beyond Pilots for Real Benefits

Randal Kaufman
Sales Director
About Black & Veatch

Transformative Technologies
Mission Critical Facilities
Renewable / Clean Energy

11,000+ Professionals
110+ offices
Six continents
7,000 active projects worldwide

$3.4 Billion in revenue in 2017

Safety Performance
0.37 Recordable Incident Rate
0.06 Lost Time Incident Rate
Transformative Technologies

Over 1,000 250KW+ High-Power Sites
Scalable Distributed
Clean Resilient Energy Infrastructure

Electric Vehicle Infrastructure
Hydrogen Infrastructure
Energy Storage Networks
Hub and Depots for Fleets & Transit
Emerging Distributed Technology
Autonomous, Connected Vehicle Infrastructure

We build complex networks faster
Step Change in Charging Infrastructure Requirements

- Larger Batteries
- Higher Power Charging
- Higher Utilization Vehicles
- Higher Voltages, Conductive, Inductive
- New Applications and Venues
 - Larger Capital Requirements
 - Power Delivery Requirements
 - Schedule Risk Management
 - Least Regret Investments

> Energy Procurement, Power Delivery, Infrastructure Deployment Strategy

High-Power Corridors
Urban Charging Hubs & Depots
Freight Movement Facilities
Autonomous Aviation
The Financial Benefits

Electric Fleets Roll Towards Cost-Parity

Several eFleet use cases in the United States have already reached cost-parity with diesel. Falling battery prices, substantially lower maintenance and fuel costs, and increased battery performance help lower the total cost of ownership across applications.

- **Light-duty truck** (Classes 1-2, 6-10,000 lbs)
 - Urban last-mile distribution with central hub and many stops
 - Regional grocery delivery for shops and restaurants

- **Medium-duty truck** (Classes 3-6, 10-26,000 lbs)
 - Grocery store chain with logistics center for several branches

- **Heavy-duty truck** (Classes 7-8, >26,000 lbs)
 - International or continental freight logistics

- **City bus** (Classes 3-6, 10-26,000 lbs)
 - Typical city bus or school bus with dozens of stops

MarCom: Add vehicle types to each category:

- **Light Duty-Truck:** Utility van
- **Medium-Duty Truck:** Mini-bus, school bus, transit bus, box truck, delivery truck
- **Heavy-Duty Truck:** garbage truck, small semi-truck, drayage truck, long-haul transportation truck

![Graph showing cost-parity over time for different vehicle types](image)

Stakeholder Alignment & Program Goals

- Existing Project History
- Concurrent, Future Projects
- Building Load Integration
- Cost of Energy, Renewable Content
- Resilience
- Future Proofing Infrastructure
- Project Timeline
- Project Budget
- Total Cost of Operation

> Fleets, Agencies, Utilities, Cities, Vehicle OEMs, Clean Energy, Community Interests, Project Execution Team, Funding & ROI
Example Schedules – Power delivery scenarios are specific to a location, feeder access, existing, in queue projects and utility operating / power provisioning standards.
Pilot While Planning for Scale

“Businesses (& Fleets) that do not electrify will be at a competitive disadvantage...”
—Black & Veatch – EVS30 “Priming the U.S. Grid for High-Power Charging”

> Modular, least regret infrastructure investment program (Fleets & Facilities)
BUILDING A WORLD OF DIFFERENCE

Randal Kaufman
Sales Director, Transformative Technologies

+1 760 576 9076
KaufmanR@bv.com

@Black_Veatch
@BVSII
We apply local expertise around the world

Argentina
Armenia
Australia
Azerbaijan
Canada
Chile
China
Georgia
Hong Kong
India
Indonesia
Ireland
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lithuania
Luxembourg
Macau
Malawi
Malaysia
Mali
Mauritania
Mauritius
Moldova
Monaco
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Zealand
Nigeria
Northern Ireland
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Peru
Poland
Portugal
Puerto Rico
Qatar
Russia
Rwanda
San Marino
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Somalia
South Africa
South Korea
Spain
Sri Lanka
St. Vincent and the Grenadines
Sweden
Switzerland
Syria
Taiwan
Tajikistan
Thailand
Timor-Leste
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Tuvalu
UAE
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Vietnam
Washington, D.C.
Understanding Power Delivery

Customer Property
- **Service Transformer**: Convert primary medium voltage to secondary, can range from ~75 kVA to 2 MVA
- **Service Entrance Conductor**: Cable to meter, Customer installs conduit
- **Supply Conductor**: A switch on the main circuit with conductor to site via overhead or underground
- **Main Switchboard**: Customer-owned, contains utility meter and main circuit breaker

Distribution Circuit
- **Radial or Network Distribution Circuit**: Distribute electricity to load. Various voltages. 12 kV circuits support ~10 - 12 MW of load
- **Distribution Conductor**: overhead via poles and insulators or underground in conduit or directly buried
- **Line Equipment**: Fuses, sectionalizers, regulators, capacitor banks used to control the operation and power quality

Distribution Substation
- **Distribution Substations**: Convert high voltage to medium voltage, connects to numerous distribution feeders
- **Medium Voltage Bus**: Many circuits/feeder connect to a common node via breakers with feeder level metering and protection. Typically 4 kV, 12 kV, 36 kV
- **High Voltage Bus**: Connection to subtransmission system 40 kV or greater including substation metering and high voltage line protection
- **Substation Transformer Bank**: Converts high voltage to medium voltage, can range 20 to 40 MVA

For illustrative purposes only, Icons for the distribution towers and transformers made by Freepik from www.flaticon.com.